ubuntu服务器安装anaconda并配置pytorch环境

前言

  做深度学习难免会用到实验室服务器上的GPU来跑数据,这时需要安装anaconda,创建虚拟环境并安装相应的深度学习框架(本文用到的是pytorch)。anaconda安装踩的坑比较少,每次都比较顺利,但是下载pytorch时有一些注意的事项。

一、安装Anaconda并创建虚拟环境

  在Anaconda官网下载linux版本:

在这里插入图片描述
  下载完成后,我们将下载好的.sh文件Anaconda3-2021.11-Linux-x86_64.sh上传到服务器,运行bash命令来安装anaconda:

bash Anaconda3-5.2.0-Linux-x86_64.sh

  安装anaconda并不困难,如果anaconda下载比较缓慢可以去清华镜像源下载,需要注意服务器上操作系统的位数。

  安装好anaconda后就可以创建虚拟环境,创建虚拟环境的步骤应该都比较熟悉。

#创建虚拟环境
conda create -n environment_name python=X.X
#激活虚拟环境
conda activate environment_name 

  一般安装3.8版本的python。

conda create -n deeplearning python=3.8

二、安装pytorch

  激活刚刚创建的虚拟环境,安装pytorch。安装pytorch前需要查看服务器上的cuda版本,可以使用如下命令:

cat /usr/local/cuda/version.txt

  查看cuda版本后,可以去pytorch官网 查看合适的pytorch版本:

在这里插入图片描述

  根据个人需求,操作系统和cuda版本选取合适的pytorch版本,将官网给出的conda命令在服务器上运行即可,如果首页没有合适的cuda版本,可以在==Previous versions of PyTorch== 中查找。
   我需要安装的是cuda版本为11.0 的pytorch,首页并没有给出11.0版本的安装命令,可以在pytorch先前的版本中查找,发现1.7.1版本的pytorch支持cuda11.0,复制相应的conda语句到服务器上运行即可安装pytorch:
在这里插入图片描述

# CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

  cuda版本是向下兼容的,应该是可以安装10.x版本对应的pytorch。

三、更换anaconda镜像源加速pytorch安装

  如果使用anaconda默认的镜像源可能存在安装缓慢的问题,这时需要更换anaconda镜像源为清华镜像源。添加清华镜像源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

  利用vim命令看修改后的anaconda镜像源文件.condarc:

vim ~/.condarc

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults
show_channel_urls: true

  删除其中的defaults项即可。这时再运行pytorch的conda安装命令,可以感觉速度有明显地提升。

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
show_channel_urls: true
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

  安装完成后,利用torch.cuda.is_available()查看cuda是否能使用。

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇