月度归档: 2022年3月

6 篇文章

DIAMOND的安装和简单使用
一、DIAMOND安装 DIAMOND用于序列比对,速度比BLAST快不少,安装也比较方便,这里介绍两种安装方式。 Linux命令安装 在linux服务器上,可通过如下命令安装: # 下载压缩文件 wget http://github.com/bbuchfink/diamond/releases/download/v0.9.25/diamond-l…
SMO理论基础
SMO优化算法(Sequential minimal optimization)由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优。在支持向量机中,我们需要优化的参数是若干个α和一个偏移量b,SMO的基本思想是每次取两个α进行优化,剩余的α固定不变…
SVM理论基础
一、SVM(support vector machines) 支持向量机(support vector machines,SVM)是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以 “最好地” 区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。 注意SVM是一个二分类模型,理论上来说是不支持…
PCA理论基础
一、什么是PCA PCA即Principal Components Analysis,是一种常用的降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。为了更加直观的理解,下文中以二维数据来对PCA的原理进行解释。 PCA的工作就是从原始的空间中顺序地找一组相互正交…
深度学习基础-Batch归一化和Softmax
一、神经网络中的超参数 根据吴恩达老师深度学习视频,按重要性给神经网络中的超参数排个序: 学习率α 动量梯度下降中的β,隐藏单元数hidden_units,批处理大小mini_batch_size 层数layers,学习率衰减参数learning_rate_decay 一个好的神经网络难免会经过多次调参,吴恩达老师给出的调参策略是,先随机选取多组参…
深度学习笔记-优化算法
一、mini-batch梯度下降 向量化样本数据能够帮助我们同时计算多个样本,例如每个样本的特征数为50,样本数为100,我们可以构造样本数据矩阵(50,100),将矩阵输入到神经网络中就可以同时计算100个样本数据的输出值,神经网络输出值的维度为(1,100)。 $$ \begin{aligned} input:X(n_x,m),n_x为特征数,…